Accelerated Math IIIA Final Review

MATERIALS for each PAIR

- one mini whiteboard
- one whiteboard marker
- one paper towel

INSTRUCTIONS

- 1) Ms. Lee picks a student randomly.
- 2) Selected student chooses a question.
- 3) Pair discusses question and writes <u>FINAL</u> <u>WORK & SOLUTION</u> on whiteboard.
- 4) When Ms. Lee calls "TIME," all pairs raise their whiteboards.
- 5) Pairs with the correct answer earn points.
- 6) All students jot down any necessary notes in their Math Comp Book.

HOW TO NOT LOSE POINTS...

- Follow instructions!
- Ask for hints <u>ONLY</u> when your pair absolutely needs one. Hints cost \$50.
- Use the whiteboards and markers only for the game and nothing else.
 Follow your partner roles.

PARTNER ROLES

- Writer: Writes on the whiteboard.
- Resource Manager: Looks through the Math Comp Book for assistance. Uses the calculator when needed.
- You and are your partner must take turns alternating the two roles.

JEOPARDY BOARD

Notation	Fundamental Thrm of Algebra	Quadratics	Transform ations	Graphing Functions
\$100	\$100	\$100	\$100	\$100
\$200	\$200	\$200	\$200	\$200
\$300	\$300	\$300	\$300	\$300
\$400	\$400	\$400	\$400	\$400
\$500	\$500	\$500	\$500	\$500

Identify the domain of each function.

10

D: (-∞, ∞)

D: (-∞, ∞)

Identify the range of each function.

R: [-2.596, ∞)

R: (-∞, ∞)

List the intervals of increase and decrease.

Increasing on (-2, 0.314) & (3.186, ∞)

Decreasing on (-∞, -2) & (0.314, 3.186)

Click to return to Jeopardy Board

Identify when...

f(x) < 0 f(x) ≥ 0

f(x) < 0 on (-∞,-6.1) & (1.83, 4.77)

f(x) ≥ 0 on [-6.1, 1.83] & [4.77, ∞)

Click to return to Jeopardy Board

Use a sign chart to identify when $f(x) \leq 0$ and f(x) > 0.

$f(x) = -3x(x-4)(2x+6)(x-7)^2$

$f(x) \le 0$ on [-3, 0] and [4, ∞) f(x) > 0 on (- ∞ , -3) and (0, 4)

Function	# of Zeros
(-2x)^3 + 4x - 1	
5x^5 -2x^2 + 4x + 3	
3x^4 + 6	

Function	# of Zeros
(-2x)^3 + 4x - 1	3
5x^5 -2x^2 + 4x + 3	5
3x^4 + 6	4

Function	# of Real Zeros/Roots
(x-3)(x^2 +16)	
(x^3 + 8)(x+5)^3	
-2x(3x+2)^2	

Function	# of Real Zeros/Roots
(x-3)(x^2 +16)	1
(x^3 + 8)(x+5)^3	4
-2x(3x+2)^2	3

Function	# of x-intercepts
(x-3)(x^2 +16)	
(x^3 + 8)(x+5)^3	
-2x(3x+2)^2	

Function	# of x-intercepts
(x-3)(x^2 +16)	1
(x^3 + 8)(x+5)^3	2
-2x(3x+2)^2	2

Function	Possible # of Relative Extrema
Cubic	
Quintic	
Quartic	

Function	Possible # of Relative Extrema
Cubic	2, 0
Quintic	4, 2, 0
Quartic	3, 1

Function	Possible # of Absolute Extrema
(-2x)^3 + 4x - 1	
5x^5 -2x^2 + 4x + 3	
3x^4 + 6	

Function	Possible # of Absolute Extrema
(-2x)^3 + 4x - 1	N/A
5x^5 -2x^2 + 4x + 3	N/A
3x^4 + 6	1, 2

Describe the symmetry of each function.

Click to see answer

EVEN (symmetric across the y-axis)

NEITHER (not symmetric across y-axis or origin)

Click to return to Jeopardy Board

Determine the ^{f(x)} leading coefficient of each graph.

Click to see answer

a = -2

a = 1/2

Graph $f(x) = -3(x+4)^2 - 1$

Quadratics - \$300 $f(x) = -3(x+4)^2 - 1$

Click to return to Jeopardy Board

Quadratics - \$400

Graph f(x) = 2(x+4)(x-1) and identify the function's vertex and axis of symmetry.

f(x) = 2(x+4)(x-1)

Vertex: (-1.5, -12.5) Axis of Symmetry: x = -1.5

Graph f(x) = ½ x^2 + x - 15/2 and identify the function's vertex, axis of symmetry, and x-intercepts.

 $f(x) = \frac{1}{2} x^2 + x - \frac{15}{2}$

Vertex: (-1, -8) Axis of Symmetry: x = -1 x-Intercepts: (-5, 0) (3, 0)

Click to return to Jeopardy Board

What is the difference between rigid and non-rigid transformations?

Rigid transformations change a graph while preserving its shape and size. Non-rigid transformations change a graph without preserving its shape and size.

Describe how to transform f(x) = x² to create the graphs of...

> $g(x) = x^2 - 3$ h(x) = x^2 + 3 m(x) = (x-3)^2 n(x) = (x+3)^2

 $g(x) = x^{2} - 3$ $h(x) = x^{2} + 3$ $m(x) = (x-3)^{2}$ $n(x) = (x+3)^{2}$ VT down 3 unitsVT up 3 unitsHT 3 units to rightHT 3 units to left

Describe how to transform f(x) = |x| to create the graph of $g(x) = \frac{1}{2} |x-5|$.

$f(x) = |x| \rightarrow g(x) = \frac{1}{2}|x-5|$

|x-5|: TRANSLATE f(x) 5 units to the RIGHT $\frac{1}{2}x-5$ |: VERTICAL SHRINK by a factor of $\frac{1}{2}$

Describe how to transform f(x) = x² to create the graphs of...

> $g(x) = 2x^{2}$ h(x) = $\frac{1}{2} x^{2}$ m(x) = $(2x)^{2}$ n(x) = $(\frac{1}{2}x)^{2}$

 $g(x) = 2x^{2}$ h(x) = $\frac{1}{2} x^{2}$ m(x) = $(2x)^{2}$ n(x) = $(\frac{1}{2}x)^{2}$ V stretch by 2 V shrink by ½ H shrink by ½ H stretch by 2

Click to return to Jeopardy Board

Describe each transformation (in words): **Vertical Translation** Horizontal Translation Vertical Dilation Horizontal Dilation **Reflection across x-axis Reflection across y-axis**

VT: add/subtract # from the function HT: add/subtract # from the input VD: multiply/divide # from the function HD: multiply/divide # from the input Reflection across x-axis: opposite of function Reflection across y-axis: opposite of input

Graph $f(x) = -x(x-2)^2(x+5)$

f(x) = -x(x-2) $^{2}(x+5)$

Graph $f(x) = x^{3} - 4$

$f(x) = x^{3} - 4$

Write a function to represent the graph shown.

 $g(x) = \begin{cases} -(x+3)^2, \ x < -2 \\ -x^3, \ -2 \le x < 2 \\ (x-3)^2, \ x \ge 2 \end{cases}$

Graph $f(x) = 2(x - 3)^{4}$

$f(x) = 2(x - 3)^4$

Graph f(x) = $\begin{cases} x^2 , x \le -1 \\ -x^3 + 3, -1 < x \le 1 \\ -x^2 + 4, x > 1 \end{cases}$

 $f(x) = \begin{cases} x^{2} , x \le -1 \\ -x^{3} + 3 , -1 < x \le 1 \\ -x^{2} + 4 , x > 1 \end{cases}$

