[EDARI!
 Accelerated Math IIIA Final Review

MATERIALS for each PAIR

- one mini whiteboard
- one whiteboard marker
- one paper towel

INSTRUCTIONS

1) Ms. Lee picks a student randomly.
2) Selected student chooses a question.
3) Pair discusses question and writes FINAL WORK \& SOLUTION on whiteboard.
4) When Ms. Lee calls "TIME," all pairs raise their whiteboards.
5) Pairs with the correct answer earn points.
6) All students jot down any necessary notes in their Math Comp Book.

HOW TO NOT LOSE POINTS...

- Follow instructions!
- Ask for hints ONLY when your pair absolutely needs one. Hints cost $\$ 50$.
- Use the whiteboards and markers only for the game and nothing else.
- Follow your partner roles.

PARTNER ROLES

- Writer: Writes on the whiteboard.
- Resource Manager: Looks through the Math Comp Book for assistance. Uses the calculator when needed.
- You and are your partner must take turns alternating the two roles.

JEOPARDY BOARD

Notation	$\begin{gathered} \text { Fundamental } \\ \text { Thrm of } \\ \text { Algebra } \end{gathered}$	Uacratics	Transform ation	Graphing Functions
\$100	\$100	\$100	\$100	\$100
\$200	\$200	\$200	\$200	\$200
\$300	\$300	\$300	\$300	\$300
\$400	\$400	\$400	\$400	\$400
\$500	\$500	\$500	\$500	\$500

Notation - \$100

Identify the domain of each function.

A.

Notation - \$100

D: $(-\infty, \infty)$

$$
\text { D: }(-\infty, \infty)
$$

Click to return to Jeopardy Board

Notation - \$200

Identify the range of each function.

D

Notation - \$200

R: $[-2.596, \infty)$

$R:(-\infty, \infty)$

Click to return to Jeopardy Board

Notation - \$300

List the intervals of increase and decrease.

Notation - \$300

Increasing on

 $(-2,0.314)$ \& (3.186, ${ }^{\infty}$)Decreasing on

$$
(-\infty,-2) \&
$$

$$
(0.314,3.186)
$$

Click to return to Jeopardy Board

Notation - \$400

Identify when...
 $f(x)<0$
 $f(x) \geq 0$

Click to see answer

Notation - \$400

$$
\begin{gathered}
f(x)<0 \text { on } \\
(-\infty,-6.1) \& \\
(1.83,4.77) \\
f(x) \geq 0 \text { on } \\
{[-6.1,1.83] \&} \\
{[4.77, \infty)}
\end{gathered}
$$

Click to return to Jeopardy Board

Notation - \$500

Use a sign chart to identify when $f(x) \leq 0$ and $f(x)>0$.

$f(x)=-3 x(x-4)(2 x+6)(x-7)^{\wedge} 2$

Notation - \$500

$f(x)=-3 x(x-4)(2 x+6)(x-7)^{\wedge} 2$

$f(x) \leq 0$ on $[-3,0]$ and $[4, \infty)$ $f(x)>0$ on $(-\infty,-3)$ and $(0,4)$

Click to return to Jeopardy Board

Fundamental Thrm of Alg - \$100

Function	\# of Zeros
$(-2 x)^{\wedge} 3+4 x-1$	
$5 x^{\wedge} 5-2 x^{\wedge} 2+4 x+3$	
$3 x^{\wedge} 4+6$	

Click to see answer

Fundamental Thrm of Alg - \$100

Function	\# of Zeros
$(-2 x)^{\wedge} 3+4 x-1$	3
$5 x^{\wedge} 5-2 x^{\wedge} 2+4 x+3$	5
$3 x^{\wedge} 4+6$	4

Click to return to Jeopardy Board

Fundamental Thrm of Alg - \$200

$$
\begin{gathered}
\text { Function } \\
(x-3)\left(x^{\wedge} 2+16\right) \\
\left(x^{\wedge} 3+8\right)(x+5)^{\wedge} 3 \\
-2 x(3 x+2)^{\wedge} 2
\end{gathered}
$$ \# of Real Zeros/Roots

Fundamental Thrm of Alg - \$200

$$
\begin{array}{c|c|}
\text { Function } & \text { \# of Real Zeros/Roots } \\
\hline(x-3)\left(x^{\wedge} 2+16\right) & 1 \\
\hline\left(x^{\wedge} 3+8\right)(x+5)^{\wedge} 3 & 4 \\
\hline-2 x(3 x+2)^{\wedge} 2 & 3
\end{array}
$$

Click to return to Jeopardy Board

Fundamental Thrm of Alg - \$300

$$
\begin{gathered}
\text { Function } \\
(x-3)\left(x^{\wedge} 2+16\right) \\
\left(x^{\wedge} 3+8\right)(x+5)^{\wedge} 3 \\
-2 x(3 x+2)^{\wedge} 2
\end{gathered}
$$

Fundamental Thrm of Alg - \$300

$$
\begin{array}{c|c}
\text { Function } & \text { \# of x-intercepts } \\
\hline(x-3)\left(x^{\wedge} 2+16\right) & 1 \\
\hline\left(x^{\wedge} 3+8\right)(x+5)^{\wedge} 3 & 2 \\
\hline-2 x(3 x+2)^{\wedge} 2 & 2
\end{array}
$$

Click to return to Jeopardy Board

Fundamental Thrm of Alg - \$400

Function	Possible \# of Relative Extrema
Cubic	
Quintic	
Quartic	

Fundamental Thrm of Alg - \$400

Function	Possible \# of Relative Extrema
Cubic	2,0
Quintic	$4,2,0$
Quartic	3,1

Fundamental Thrm of Alg - \$500

Function	Possible \# of Absolute Extrema
$(-2 x)^{\wedge} 3+4 x-1$	
$5 x^{\wedge} 5-2 x^{\wedge} 2+4 x+3$	
$3 x^{\wedge} 4+6$	

Fundamental Thrm of Alg - \$500

Function	Possible \# of Absolute Extrema
$(-2 x)^{\wedge} 3+4 x-1$	N/A
$5 x^{\wedge} 5-2 x^{\wedge} 2+4 x+3$	N/A
$3 x^{\wedge} 4+6$	1,2

Quadratics - \$100

Describe the symmetry of each function.

Click to see answer

Quadratics -- \$100

EVEN
(symmetric across the y-axis)

NEITHER
(not symmetric across y -axis or origin)
Click to return to Jeopardy Board

Quadratics -- \$200

Determine the
 leading coefficient of each graph.

Click to see answer

Quadratics -- \$200

$a=-2$

$$
a=1 / 2
$$

Click to return to Jeopardy Board

Quadratics - \$300

Graph $f(x)=-3(x+4)^{2}-1$

Quadratics - \$300

$$
f(x)=-3(x+4)^{2}-1
$$

Click to return to Jeopardy Board

Quadratics - \$400

Graph $f(x)=2(x+4)(x-1)$
 and identify the function's vertex and axis of symmetry.

Quadratics - \$400

$$
f(x)=2(x+4)(x-1)
$$

Vertex: (-1.5, -12.5) Axis of Symmetry: $\quad x=-1.5$

Click to return to Jeopardy Board

Quadratics - \$500

Graph $f(x)=1 / 2 x^{\wedge} 2+x-15 / 2$ and identify the function's vertex, axis of symmetry, and x-intercepts.

Quadratics - \$500

$$
f(x)=1 / 2 x^{\wedge} 2+x-15 / 2
$$

Vertex: (-1, -8)
Axis of Symmetry: $x=-1$ x-Intercepts: $(-5,0)$
$(3,0)$

Click to return to Jeopardy Board

Transformations - \$100

What is the difference between rigid and non-rigid transformations?

Transformations - \$100

Rigid transformations change a graph while preserving its shape and size. Non-rigid transformations change a graph without preserving its shape and size.

Transformations - \$200

Describe how to transform $f(x)=x^{2}$ to create the graphs of...

$$
\begin{aligned}
& g(x)=x^{2}-3 \\
& h(x)=x^{2}+3 \\
& m(x)=(x-3)^{2} \\
& n(x)=(x+3)^{2}
\end{aligned}
$$

Transformations - \$200

$$
\begin{array}{ll}
g(x)=x^{2}-3 & \text { VT down } 3 \text { units } \\
h(x)=x^{2}+3 & \text { VT up } 3 \text { units } \\
m(x)=(x-3)^{2} & \text { HT } 3 \text { units to right } \\
n(x)=(x+3)^{2} & \text { HT } 3 \text { units to left }
\end{array}
$$

Transformations - \$300

Describe how to transform $f(x)=|x|$ to create the graph of $g(x)=1 / 2|x-5|$.

Transformations - \$300

$$
f(x)=|x| \rightarrow g(x)=1 / 2|x-5|
$$

$|x-5|: ~ T R A N S L A T E ~ f(x) 5$ units to the RIGHT $1 / 2|x-5|$: VERTICAL SHRINK by a factor of $1 / 2$

Transformations - \$400

Describe how to transform $f(x)=x^{2}$ to create the graphs of...

$$
\begin{aligned}
& g(x)=2 x^{2} \\
& h(x)=1 / 2 x^{2} \\
& m(x)=(2 x)^{2} \\
& n(x)=(1 / 2 x)^{2}
\end{aligned}
$$

Transformations - \$400

$g(x)=2 x^{2}$
$h(x)=1 / 2 x^{2}$
$m(x)=(2 x)^{2}$
$n(x)=(1 / 2 x)^{2}$

V stretch by 2
V shrink by $1 / 2$ H shrink by $1 / 2$ H stretch by 2

Transformations - \$500

Describe each transformation (in words):

$$
\begin{gathered}
\text { Vertical Translation } \\
\text { Horizontal Translation } \\
\text { Vertical Dilation } \\
\text { Horizontal Dilation } \\
\text { Reflection across x-axis } \\
\text { Reflection across y-axis }
\end{gathered}
$$

Transformations - \$500

VT: add/subtract \# from the function HT: add/subtract \# from the input
VD: multiply/divide \# from the function
HD: multiply/divide \# from the input
Reflection across x-axis: opposite of function
Reflection across y-axis: opposite of input

Graphing Functions - \$100

$$
\begin{gathered}
\text { Graph } \\
f(x)=-x(x-2)^{2}(x+5)
\end{gathered}
$$

Graphing Functions - \$100

$$
f(x)=-x(x-2)
$$

$$
{ }^{2}(x+5)
$$

Click to return to Jeopardy Board

Graphing Functions - \$200

$$
\text { Graph } f(x)=x^{3}-4
$$

Graphing Functions - \$200

$f(x)=x^{3}-4$

Click to return to Jeopardy Board

Graphing Functions - \$300

Write a
function to represent the graph shown.

Click to see answer

Graphing Functions - \$300

$$
g(x)= \begin{cases}-(x+3)^{2}, & x<-2 \\ -x^{3} & -2 \leq x<2 \\ (x-3)^{2}, & , x \geq 2\end{cases}
$$

Click to return to Jeopardy Board

Graphing Functions - \$400

Graph $f(x)=2(x-3)^{4}$

Graphing Functions - \$400

$f(x)=2(x-3)^{4}$

Click to return to Jeopardy Board

Graphing Functions - \$500

Graph $f(x)= \begin{cases}x^{2} & , x<-1 \\ -x^{3}+3, & -1<x \leq 1 \\ -x^{2}+4, & x>1\end{cases}$

Click to see answer

Graphing Functions - \$500

$$
f(x)= \begin{cases}x^{2} & , x \leq-1 \\ -x^{3}+3, & -1<x \leq 1 \\ -x^{2}+4, & , x>1\end{cases}
$$

Click to return to Jeopardy Board

