EUPARDU Final Review

GROUP MATERIALS

- one mini whiteboard
- one whiteboard marker
- one paper towel

INSTRUCTIONS

- 1) Ms. Lee picks a student randomly.
- 2) Selected student chooses a question.
- 3) Group discusses question and writes <u>FINAL</u> <u>WORK & SOLUTION</u> on whiteboard.
- 4) When Ms. Lee calls "TIME," all groups raise their whiteboards.
- 5) Groups with the correct answer earn points.
- 6) All students jot down any necessary notes in their Math Comp Book.

HOW TO <u>NOT</u> LOSE POINTS...

- Students take turns writing on the whiteboard. After each question, whiteboard must be rotated CLOCKWISE.
- Follow instructions!
- Ask for hints <u>ONLY</u> when your group absolutely needs one. Hints cost \$50.
- Don't write/draw anything unnecessary.
 Don't use the markers on anything other than the whiteboards.

JEOPARDY BOARD

CH 5: Exponentials	CH 6: System of Equations	CH 7: System of Inequalities	CH 12: Coordinate Plane Geometry	CH 14: Area & Perimeter
\$100	\$100	\$100	\$100	\$100
\$200	\$200	\$200	\$200	\$200
\$300	<mark>\$300</mark>	\$300	<mark>\$300</mark>	\$300
\$400	\$400	\$400	\$400	\$400
\$500	\$500	\$500	\$500	\$500

Which equation represents an exponential function?

a. $f(x) = 3^{x} - 2$ b. f(x) = 3x - 2c. $f(x) = 3x^{2} - 2$ d. f(x) = |3x| - 2

Which equation represents an exponential function?

|a. $f(x) = 3^x - 2^x$

Write $\frac{1}{10,000}$ as a single power.

$\frac{1}{10,000} = 10^{-4}$

Write a function that represents the number of stickers as a function of the number of days, t.

Mario bought the following number of stickers:

- One sticker on the first day
- Four stickers on the second day
- Sixteen stickers on the third day

Mario bought the following number of stickers:

- One sticker on the first day
- Four stickers on the second day
- Sixteen stickers on the third day

Fill in the blanks to describe each transformation.

VT up VT down		2^{x} + 5 2^{x} - 5
HT right HT left	(x + 5, y) (x - 5, y)	
Reflection across x-axis	(x, -y)	
Reflection across y-axis	(-x, y)	

Fill in the blanks to describe each transformation.

VT up	(x, y + 5)	$f(x) = 2^{x} + 5$
VT down	(x, y - 5)	$f(x) = 2^{x} - 5$
HT right	(x + 5, y)	$f(x) = 2^{x-5}$
HT left	(x - 5, y)	$f(x) = 2^{x+5}$
Reflection across x-axis	(x, -y)	$f(x) = -2^{x}$
Reflection across y-axis	(-x, y)	$f(x) = 2^{-x}$

Solve:

The graph shows the number of automobiles sold by two companies. What does the solution x = 3 represent?

The solution x = 3 represents the month in which both companies sell the SAME number of automobiles.

Write a system of equations to represent this situation:

CrossFit offers a membership for \$30 each month plus a \$100 start up fee. Crunch offers a membership for \$50 each month plus a \$20 start up fee.

CrossFit offers a membership for \$30 each month plus a \$100 start up fee. Crunch offers a membership for \$50 each month plus a \$20 start up fee.

 $\begin{cases} y = 30x + 100 \\ y = 50x + 20 \end{cases}$

Explain when it is BEST to use each method to solve a system of equations:

> Graphing Substitution Linear Combination

Graphing: Equations are easy to graph and the INTERSECTION POINT is clear. Substitution: One of the variables can easily be ISOLATED. Linear Combination: One set of the variables can be made INVERSES.

Finest Cooks offers a membership to take cooking classes for an initial fee of \$60 plus \$20 for each lesson. Professional Cooks offers a membership to take cooking classes for an initial fee of \$15 plus \$35 for each lesson. After how many cooking classes will the cost at both companies be the same?

$\begin{cases} y = 60 + 20x \\ y = 15 + 35x \end{cases}$

After how 3 cooking classes, the costs at both companies will be the same.

Fill in the blanks to describe the different types of solutions for systems of equations.

	Algebraic solution	Graphical Solution
One solution	x = 5 y = -3 → (5, -3)	
	5 = -3 (false statement)	
	-3 = -3 (true statement)	

Fill in the blanks to describe the different types of solutions for systems of equations.

	Algebraic solution	Graphical Solution
One solution	x = 5 y = -3 → (5, -3)	<u>one</u> intersection point
No solution	5 = -3 (false statement)	parallel lines \rightarrow <u>no</u> intersection point
Infinitely many solutions	-3 = -3 (true statement)	same line \rightarrow <u>infinitely many</u> intersection points

Click to return to Jeopardy Board

When graphing inequalities, how do you determine whether to use a solid or dashed line?

solid line dashed line

≤ or ≥ < or >

CH 7: System of Inequalities - \$200 Which is a solution to $\begin{cases} y > 2x + 5 \\ y < -3x + 5 \end{cases}$

A. (0, 5) C. (1, 8)

B. (2, 3) D. (-3, 0)

CH 7: System of Inequalities - \$200 Which is a solution to $\begin{cases} y > 2x + 5 \\ y < -3x + 5 \end{cases}$

A. (0, 5) <u>C.</u> (1, 8)

B. (2, 3) D. (-3, 0)

Click to return to Jeopardy Board

CH 7: System of Inequalities - \$300 Write a system of inequalities to represent this situation:

A company produces white rice and brown rice. There is an expected demand of at least 200 pounds of white rice and 50 pounds of brown rice each day. A total of at least 300 pounds of rice must be produced each day.

A company produces white rice and brown rice. There is an expected demand of at least 200 pounds of white rice and 50 pounds of brown rice each day. A total of at least 300 pounds of rice must be produced each day.

 $\begin{cases} x \ge 200 \\ y \ge 50 \\ x + y \ge 300 \end{cases}$

Write a system of inequalities to represent the graph.

 $\begin{cases} x \ge -5 \\ y \le -x \\ y \ge x \end{cases}$

What is the difference between the slopes of parallel and perpendicular lines?

Parallel lines have the SAME slopes.

Perpendicular lines have OPPOSITE RECIPROCAL slopes.

How do horizontal and vertical translations of a point affect its coordinates?

Horizontal translations affect the <u>x-coordinate</u>. Vertical translations affect the <u>y-coordinate</u>.

Write an equation for... a vertical line and a horizontal line

vertical line

horizontal line y =

 $\mathbf{X} =$

Angle XYZ's endpoints are X(5, -2), Y(-1, 3), and Z(4, 10). Chris translates the angle 9 units to the right and labels the new angle X'Y'Z'.

What are the coordinates of the endpoints of X'Y'Z'?

Angle XYZ's endpoints are X(5, -2), Y(-1, 3), and Z(4, 10). Chris translates the angle 9 units to the right and labels the new angle X'Y'Z'.

> X' (14, -2) Y' (8, 3) Z' (13, 10)

TRUE or FALSE: Translating a figure changes the figure's perimeter and area.

FALSE...

Translating a figure simply moves it. The figures size does not change.

Explain how to find...

Perimeter Area

Perimeter = add up all the side lengths of the figure

Area = bhrectangleArea = bhtriangle2

Click to return to Jeopardy Board

CH 14: Area & Perimeter - \$300 A triangle has vertices at X(6, -1), Y(3, -4), and Z(6,-6).

What is the height of the triangle?

A triangle has vertices at X(6, -1), Y(3, -4), and Z(6,-6).

height = 3 units

Explain how you could double the area of this triangle.

Click to see answer

Click to return to Jeopardy Board

