4 [0, Final Review

GROUP MATERIALS

- one mini whiteboard
- one whiteboard marker
- one paper towel

INSTRUCTIONS

1) Ms. Lee picks a student randomly.
2) Selected student chooses a question.
3) Group discusses question and writes FINAL WORK \& SOLUTION on whiteboard.
4) When Ms. Lee calls "TIME," all groups raise their whiteboards.
5) Groups with the correct answer earn points.
6) All students jot down any necessary notes in their Math Comp Book.

HOW TO NOT LOSE POINTS...

- Students take turns writing on the whiteboard. After each question, whiteboard must be rotated CLOCKWISE.
- Follow instructions!
- Ask for hints ONLY when your group absolutely needs one. Hints cost \$50.
- Don't write/draw anything unnecessary. Don't use the markers on anything other than the whiteboards.

JEOPARDY BOARD

$\begin{gathered} \text { CH 5: } \\ \text { Exponentials } \end{gathered}$	CH 6: System of Equations	CH 7: System of Inequalities		CH 14: Area \& Perimeter
\$100	\$100	\$100	\$100	\$100
\$200	\$200	\$200	\$200	\$200
\$300	\$300	\$300	\$300	\$300
\$400	\$400	\$400	\$400	\$400
\$500	\$500	\$500	\$500	\$500

CH 5: Exponentials - \$100

Which equation represents an exponential function?

$$
\begin{aligned}
& \text { a. } f(x)=3^{x}-2 \\
& \text { b. } f(x)=3 x-2 \\
& \text { c. } f(x)=3 x^{2}-2 \\
& \text { d. } f(x)=|3 x|-2
\end{aligned}
$$

CH 5: Exponentials - \$100

Which equation represents an exponential function?

$$
\text { a. } f(x)=3^{x}-2
$$

CH 5: Exponentials - \$200

Write $\frac{1}{10,000}$ as a single power.

CH 5: Exponentials - \$200

$\frac{1}{10,000}=10^{-4}$

CH 5: Exponentials - \$300

Write a function that represents the number of stickers as a function of the number of days, t.

Mario bought the following number of stickers:

- One sticker on the first day
- Four stickers on the second day
- Sixteen stickers on the third day

CH 5: Exponentials- \$300

Mario bought the following number of stickers:

- One sticker on the first day
- Four stickers on the second day
- Sixteen stickers on the third day

$$
f(t)=4^{t}
$$

CH 5: Exponentials - \$400

Fill in the blanks to describe each transformation.
$\left.\left.\begin{array}{|c|c|c|}\hline \begin{array}{c}\text { VT up } \\ \text { VT down }\end{array} & & 2^{x}+5 \\ 2^{x}-5\end{array} \right\rvert\, \begin{array}{c}\text { HT right } \\ \text { HT left }\end{array} \quad \begin{array}{c}(x+5, y) \\ (x-5, y)\end{array}\right]$

CH 5: Exponentials - \$400

Fill in the blanks to describe each transformation.

VT up VT down	$(x, y+5)$ $(x, y-5)$	$f(x)=2^{x}+5$
$f(x)=2^{x}-5$		
HT right HT left	$(x+5, y)$ $(x-5, y)$	$f(x)=2^{x-5}$ $f(x)=2^{x+5}$
Reflection across x-axis	$(x,-y)$	$f(x)=-2^{x}$
Reflection across y-axis	$(-x, y)$	$f(x)=2^{-x}$

CH 5: Exponentials - \$500

Solve:

Click to see answer

CH 5: Exponentials - \$500

$x=3$

Click to return to Jeopardy Board

CH 6: System of Equations - \$100

The graph shows the number of automobiles sold by two companies. What does the solution $x=3$ represent?

CH 6: System of Equations - \$100

The solution $\mathrm{x}=3$ represents the month in which both companies sell the SAME number of automobiles.

Click to return to Jeopardy Board

CH 6: System of Equations - \$200

Write a system of equations to represent this situation:

CrossFit offers a membership for $\$ 30$ each month plus a $\$ 100$ start up fee. Crunch offers a membership for $\$ 50$ each month plus a $\$ 20$ start up fee.

CH 6: System of Equations - \$200

CrossFit offers a membership for $\$ 30$ each month plus a $\$ 100$ start up fee. Crunch offers a membership for $\$ 50$ each month plus a $\$ 20$ start up fee.

$$
\left\{\begin{array}{l}
y=30 x+100 \\
y=50 x+20
\end{array}\right.
$$

CH 6: System of Equations - \$300

Explain when it is BEST to use each method to solve a system of equations:

Graphing
Substitution
Linear Combination

CH 6: System of Equations - \$300

Graphing: Equations are easy to graph and the INTERSECTION POINT is clear. Substitution: One of the variables can easily be ISOLATED.
Linear Combination: One set of the variables can be made INVERSES.

CH 6: System of Equations - \$400

Finest Cooks offers a membership to take cooking classes for an initial fee of $\$ 60$ plus $\$ 20$ for each lesson.
Professional Cooks offers a membership to take cooking classes for an initial fee of $\$ 15$ plus $\$ 35$ for each lesson. After how many cooking classes will the cost at both companies be the same?

CH 6: System of Equations - \$400

$$
\left\{\begin{array}{l}
y=60+20 x \\
y=15+35 x
\end{array}\right.
$$

After how 3 cooking classes, the costs at both companies will be the same.

CH 6: System of Equations - \$500

Fill in the blanks to describe the different types of solutions for systems of equations.

	Algebraic solution	Graphical Solution
One solution	$\mathrm{x}=5 \mathrm{y}=-3$ $\rightarrow(5,-3)$	
	$5=-3$ (false statement)	
	$-3=-3$ (true statement)	

CH 6: System of Equations - \$500

Fill in the blanks to describe the different types of solutions for systems of equations.

	Algebraic solution	Graphical Solution
One solution	$\mathrm{x}=5 \mathrm{y}=-3$ $\rightarrow(5,-3)$	one intersection point
No solution	$5=-3$ (false statement)	parallel lines \rightarrow no intersection point
Infinitely many solutions	$-3=-3$ (true statement)	same line \rightarrow infinitely many intersection points

Click to return to Jeopardy Board

CH 7: System of Inequalities - \$100

When graphing inequalities, how do you determine whether to use a solid or dashed line?

CH 7: System of Inequalities - \$100

solid line
 \leq or \geq dashed line < or >

CH 7: System of Inequalities - \$200

$$
\begin{aligned}
& \text { Which is a solution to } \\
& \qquad\left\{\begin{array}{l}
y>2 x+5 \\
y<-3 x+5
\end{array}\right.
\end{aligned}
$$

$$
\begin{array}{ll}
\text { A. }(0,5) & \text { B. }(2,3) \\
\text { C. }(1,8) & \text { D. }(-3,0)
\end{array}
$$

CH 7: System of Inequalities - \$200

$$
\begin{aligned}
& \text { Which is a solution to } \\
& \qquad\left\{\begin{array}{l}
y>2 x+5 \\
y<-3 x+5
\end{array}\right.
\end{aligned}
$$

A.
 $(0,5)$
 B. $(2,3)$
 C. $(1,8)$
 $$
\text { D. }(-3,0)
$$

CH 7: System of Inequalities - \$300 Write a system of inequalities to represent this situation:

A company produces white rice and brown rice. There is an expected demand of at least 200 pounds of white rice and 50 pounds of brown rice each day. A total of at least 300 pounds of rice must be produced each day.

CH 7: System of Inequalities - \$300

A company produces white rice and brown rice. There is an expected demand of at least 200 pounds of white rice and 50 pounds of brown rice each day. A total of at least 300 pounds of rice must be produced each day.

$$
\left\{\begin{array}{l}
x \geq 200 \\
y \geq 50 \\
x+y \geq 300
\end{array}\right.
$$

Click to return to Jeopardy Board

CH 7: System of Inequalities - \$400

Write a system of inequalities
to represent the graph.

CH 7: System of Inequalities - \$400

$$
\left\{\begin{array}{l}
x \geq-5 \\
y \leq-x \\
y \geq x
\end{array}\right.
$$

Click to return to Jeopardy Board

CH 7: System of Inequalities - \$500

BONUS

CH 7: System of Inequalities - \$500

BONUS

CH 12: Coordinate Plane Geometry - \$100

BONUS

CH 12: Coordinate Plane Geometry - \$100

BONUS

CH 12: Coordinate Plane Geometry - \$200

What is the difference between the slopes of parallel and
 perpendicular lines?

CH 12: Coordinate Plane Geometry - \$200

Parallel lines have the SAME slopes.

Perpendicular lines have OPPOSITE RECIPROCAL slopes.

CH 12: Coordinate Plane Geometry - \$300

How do horizontal and vertical translations of a point affect its coordinates?

CH 12: Coordinate Plane Geometry - \$300

Horizontal translations affect the x-coordinate.
 Vertical translations affect the y-coordinate.

CH 12: Coordinate Plane Geometry - \$400

Write an equation for... a vertical line and a horizontal line

CH 12: Coordinate Plane Geometry - \$400

vertical line $\quad x=$ horizontal line $\quad \mathrm{y}=$

CH 12: Coordinate Plane Geometry - \$500

Angle $X Y Z$'s endpoints are $X(5,-2)$, $Y(-1,3)$, and $Z(4,10)$. Chris translates
the angle 9 units to the right and labels the new angle $X^{\prime} Y^{\prime} Z^{\prime}$.

What are the coordinates of the endpoints of $X^{\prime} Y^{\prime} Z^{\prime}$?

CH 12: Coordinate Plane Geometry - \$500
Angle $X Y Z$'s endpoints are $X(5,-2)$, $Y(-1,3)$, and $Z(4,10)$. Chris translates the angle 9 units to the right and labels the new angle $X^{\prime} Y^{\prime} Z^{\prime}$.

$$
\begin{aligned}
& X^{\prime}(14,-2) \\
& Y^{\prime}(8,3) \\
& Z^{\prime}(13,10)
\end{aligned}
$$

Click to return to Jeopardy Board

CH 14: Area \& Perimeter - $\$ 100$

$$
\begin{gathered}
\text { TRUE or FALSE: } \\
\text { Translating a figure changes } \\
\text { the figure's perimeter and } \\
\text { area. }
\end{gathered}
$$

CH 14: Area \& Perimeter - \$100

FALSE...

Translating a figure simply moves it. The figures size does not change.

CH 14: Area \& Perimeter - \$200

Explain how to find...

Perimeter
 Area

CH 14: Area \& Perimeter - \$200

Perimeter = add up all the side lengths of the figure

$$
\begin{array}{ll}
\text { Area }=b h & \text { rectangle } \\
\text { Area }=\frac{b h}{2} & \text { triangle }
\end{array}
$$

Click to return to Jeopardy Board

CH 14: Area \& Perimeter - $\$ 300$

$$
\begin{aligned}
& \text { A triangle has vertices at } \\
& \mathrm{X}(6,-1), Y(3,-4) \text {, and } \\
& Z(6,-6) .
\end{aligned}
$$

CH 14: Area \& Perimeter - $\$ 300$

A triangle has vertices at
 $X(6,-1), Y(3,-4)$, and Z(6,-6).

height = 3 units

CH 14: Area \& Perimeter - \$400

Explain how you could double the area of this triangle.

CH 14: Area \& Perimeter - \$400

> Translate Y to $(-4,-12)$

Or

Translate Z to $(8,0)$

Click to return to Jeopardy Board

CH 14: Area \& Perimeter - $\$ 500$

BONUS

CH 14: Area \& Perimeter - $\$ 500$

BONUS

