

Math IA Final Review

MATERIALS for each PAIR

- one mini whiteboard
- one whiteboard marker
- one paper towel

INSTRUCTIONS

- 1) Ms. Lee picks a student randomly.
- 2) Selected student chooses a question.
- 3) Pair discusses question and writes <u>FINAL</u> <u>WORK & SOLUTION</u> on whiteboard.
- 4) When Ms. Lee calls "TIME," all pairs raise their whiteboards.
- 5) Pairs with the correct answer earn points.
- 6) All students jot down any necessary notes in their Math Comp Book.

HOW TO <u>NOT</u> LOSE POINTS...

- Follow instructions!
- Ask for hints <u>ONLY</u> when your pair absolutely needs one. Hints cost \$50.
- Use the whiteboards and markers only for the game and nothing else.
 Follow your partner roles.

PARTNER ROLES

- Writer: Writes on the whiteboard.
- Resource Manager: Looks through the Math Comp Book for assistance. Uses the calculator when needed.
- You and are your partner must take turns alternating the two roles.

JEOPARDY BOARD

Function Families	Linear Inequalities	Linear Functions	Linear Graphs	Sequences
\$100	\$100	\$100	\$100	\$100
\$200	\$200	\$200	\$200	\$200
\$300	\$300	\$300	\$300	\$300
\$400	\$400	\$400	\$400	\$400
\$500	\$500	\$500	\$500	\$500

What is the difference between a **discrete** and a **continuous** graph?

Discrete graphs are made up of isolated points

Continuous graphs are made up of infinitely many points that are connected by a line

Does this graph represent a function or a non-function? How do you know?

Click to see answer 🌔

The graph represents a **function**. Every input (x) has a unique output (y).

How are **linear** functions and **linear absolute value** functions <u>similar</u>? How are they <u>different</u>?

Linear	Linear Absolute Value
straight lines	straight lines
increase/decreases over entire domain	absolute minimum / maximum

How are **exponential** functions and **quadratic** functions <u>similar</u>? How are they <u>different</u>?

Exponential	Quadratic
curved lines	curved lines
increase/decreases over entire domain	absolute minimum / maximum

To which **function family** does each equation belong?

a.
$$f(x) = 3^{x} - 2$$

b. $f(x) = 3x - 2$
c. $f(x) = 3x^{2} - 2$
d. $f(x) = |3x| - 2$

a. $f(x) = 3^{x} - 2$ exponential b. f(x) = 3x - 2 linear c. $f(x) = 3x^{2} - 2$ quadratic d. f(x) = |3x| - 2 linear abs value

Solve and graph 14 ≥ 9 - x

What is the difference between the solution sets of x > 3 and x < -2 and $x \ge 3 \text{ or } x < -2 ?$

x > 3 and x < -2 no solution</pre>

x > 3 or x < -2 disjunction

Solve and graph -6 < 3x < 24

Solve and graph x + 2 < 3 and -2x < 4

Solve and graph - ³⁄₄ x < 6

What is the difference between slope and unit rate of change?

slope: rate of change unit rate of change: rate of change per unit

ASB is selling VISA sweaters for \$25 each. Write an equation to determine the amount of money ASB earns from its sweatshirt sales.

y = 25x

What is the value of f(x) = 7.45x + 33.7 at x = -4.3?

f(-4.3) = 1.665

Determine the unit rate of change between (-5,8) and (15, -4)

-0.6

Describe the **behavior** for each function?

a. f(x) = -5
b. f(x) = 5x
c. f(x) = -5x
d. f(x) = 5

constant increasing decreasing

Click to see answe

a. f(x) = -5
b. f(x) = 5x
c. f(x) = -5x
d. f(x) = 5

constant increasing decreasing constant

Find the x-intercept of 2x - 5y = 10

(5, 0)

Find the y-intercept of 2x - 5y = 10

(0, -2)

Identify the slope and y-intercept of y = 3x - 5

slope = 3 y-intercept = (0, -5)

Graph $y = -\frac{2}{3}x + 10$

Click to return to Jeopardy Board

Graph 2x - 3y = 18

Click to return to Jeopardy Board

TRUE or FALSE: You can write the formula of a geometric sequence using DIVISION.

FALSE...

dividing a # ---multiplying by the #'s reciprocal

Write the explicit & recursive formula for the sequence -7, -4, -1, 2, ...

explicit: $a_n = -7 + 3(n-1)$ recursive: $a_n = a_{n-1} + 3$

Find the 37th term of the sequence $a_n = 4 - 5(n-1)$

$a_{37} = -176$

Graph the sequence represented by $g_n = -2 \cdot 3^{(n-1)}$

$g_n = -2 \cdot 3^{(n-1)}$

Write the explicit & recursive formula for the sequence 64, 32, 16, 8, 4...

explicit: $g_n = 64 \cdot \frac{1}{2} (n-1)$ recursive: $g_n = g_{n-1} \cdot \frac{1}{2}$

