LEDARIJ!
 Math IA
 Final Review

MATERIALS for each PAIR

- one mini whiteboard
- one whiteboard marker
- one paper towel

INSTRUCTIONS

1) Ms. Lee picks a student randomly.
2) Selected student chooses a question.
3) Pair discusses question and writes FINAL WORK \& SOLUTION on whiteboard.
4) When Ms. Lee calls "TIME," all pairs raise their whiteboards.
5) Pairs with the correct answer earn points.
6) All students jot down any necessary notes in their Math Comp Book.

HOW TO NOT LOSE POINTS...

- Follow instructions!
- Ask for hints ONLY when your pair absolutely needs one. Hints cost $\$ 50$.
- Use the whiteboards and markers only for the game and nothing else.
- Follow your partner roles.

PARTNER ROLES

- Writer: Writes on the whiteboard.
- Resource Manager: Looks through the Math Comp Book for assistance. Uses the calculator when needed.
- You and are your partner must take turns alternating the two roles.

JEOPARDY BOARD

Function Families	Linear Inequalities	Linear Functions	Linear Graphs	Sequences
$\$ 100$	$\$ 100$	$\$ 100$	$\$ 100$	$\$ 100$
$\$ 200$	$\$ 200$	$\$ 200$	$\$ 200$	$\$ 200$
$\$ 300$	$\$ 300$	$\$ 300$	$\$ 300$	$\$ 300$
$\$ 400$	$\$ 400$	$\$ 400$	$\$ 400$	$\$ 400$
$\$ 500$	$\$ 500$	$\$ 500$	$\$ 500$	$\$ 500$

Function Families - \$100

What is the difference between a discrete and a continuous graph?

Function Families - \$100

Discrete graphs are made up of isolated points
Continuous graphs are made up of infinitely many points that are connected by a line

Function Families - \$200

Does this graph represent a function or

a non-function? How do you know?

Click to see answer

Function Families - \$200

The graph represents a function. Every input (x) has a unique output (y).

Function Families - \$300

How are linear functions and

linear absolute value
 functions similar?
 How are they different?

Function Families - \$300

Linear	Linear Absolute Value
straight lines	straight lines
increase/decreases over entire domain	absolute minimum / maximum

Function Families - \$400

How are exponential functions and quadratic functions similar?
 How are they different?

Function Families - \$400

Exponential	Quadratic
curved lines	curved lines
increase/decreases over entire domain	absolute minimum / maximum

Function Families - \$500

To which function family does each equation belong?

$$
\begin{aligned}
& \text { a. } f(x)=3^{x}-2 \\
& \text { b. } f(x)=3 x-2 \\
& \text { c. } f(x)=3 x^{2}-2 \\
& \text { d. } f(x)=|3 x|-2
\end{aligned}
$$

Function Families - \$500

$$
\begin{array}{ll}
\text { a. } f(x)=3^{x}-2 & \\
\text { b. } f(x)=3 x-2 & \\
\text { linear } \\
\text { c. } f(x)=3 x^{2}-2 & \\
\text { quadratic } \\
\text { d. } f(x)=|3 x|-2 & \\
\text { linear abs value }
\end{array}
$$

Linear Inequalities - \$100

Solve and graph $14 \geq 9-x$

Linear Inequalities - \$100

Click to return to Jeopardy Board

Linear Inequalities - \$200

What is the difference between the solution sets of
 $$
\begin{gathered} x \geq 3 \text { and } x<-2 \\ \text { and } \end{gathered}
$$ and and
 $$
x \geq 3 \text { or } x<-2 ?
$$

Click to see answer

Linear Inequalities - \$200

$x \geq 3$ and $x<-2$ no solution

$x \geq 3$ or $x<-2$ disjunction

Click to return to Jeopardy Board

Linear Inequalities - \$300

Solve and graph $-6<3 x<24$

Click to see answer

Linear Inequalities - \$300

$$
-2<x<8
$$

Linear Inequalities - \$400

> Solve and graph
> $x+2<3$ and $-2 x<4$

Linear Inequalities - \$400

$$
-2<x<1
$$

Linear Inequalities - \$500

Solve and graph
 $-3 / 4 x \leq 6$

Linear Inequalities - \$500

Linear Functions - \$100

What is the difference between slope and unit rate of change?

Linear Functions - \$100

slope: rate of change
unit rate of change: rate of change per unit

Linear Functions - \$200

ASB is selling VISA sweaters for $\$ 25$ each. Write an equation to determine the amount of money ASB earns from its sweatshirt sales.

Linear Functions - \$200

$y=25 x$

Linear Functions - \$300

What is the value of $f(x)=7.45 x+33.7$ at $x=-4.3 ?$

Linear Functions - \$300

$$
f(-4.3)=1.665
$$

Linear Functions - \$400

Determine the unit rate of change between
 $$
(-5,8) \text { and }(15,-4)
$$

Linear Functions - \$400

-0.6

Linear Functions - \$500

Describe the behavior for each function?

$$
\begin{aligned}
& \text { a. } f(x)=-5 \\
& \text { b. } f(x)=5 x \\
& \text { c. } f(x)=-5 x \\
& \text { d. } f(x)=5
\end{aligned}
$$

constant increasing decreasing

Linear Functions - \$500

$$
\begin{aligned}
\text { a. } f(x) & =-5 \\
\text { b. } f(x) & =5 x \\
\text { c. } f(x) & =-5 x \\
\text { d. } f(x) & =5
\end{aligned}
$$

constant increasing decreasing constant

Linear Graphs - \$100

Find the x-intercept of $2 x-5 y=10$

Linear Graphs - \$100

$(5,0)$

Linear Graphs - \$200

Find the y-intercept of
 $2 x-5 y=10$

Linear Graphs - \$200

$$
(0,-2)
$$

Linear Graphs - \$300

Identify the slope and y-intercept of $y=3 x-5$

Linear Graphs - \$300

$$
\begin{gathered}
\text { slope }=3 \\
\text { y-intercept }=(0,-5)
\end{gathered}
$$

Linear Graphs - \$400

Graph y $=-2 / 3 x+10$

Linear Graphs - \$400

Click to return to Jeopardy Board

Linear Graphs - \$500

Graph $2 x-3 y=18$

Linear Graphs - \$500

Click to return to Jeopardy Board

Sequences - \$100

$$
\begin{aligned}
& \text { TRUE or FALSE: } \\
& \text { You can write the formula of } \\
& \text { a geometric sequence using } \\
& \text { DIVISION. }
\end{aligned}
$$

Sequences - \$100

FALSE...

dividing a \# \longleftrightarrow multiplying by the \#'s reciprocal

Sequences - \$200

Write the explicit \& recursive formula for the sequence
 $$
-7,-4,-1,2, \ldots
$$

Sequences - \$200

explicit: $\quad a_{n}=-7+3(n-1)$
 recursive: $\mathbf{a}_{n}=\mathbf{a}_{n-1}+3$

Sequences - \$300

Find the 37th term of the sequence

$$
a_{n}=4-5(n-1)
$$

Sequences - \$300

$a_{37}=-176$

Sequences - \$400

Graph the sequence represented by
 $$
g_{n}=-2 \cdot 3^{\wedge}(n-1)
$$

Sequences - \$400

$$
g_{n}=-2 \cdot 3^{\wedge}(n-1)
$$

Sequences - \$500

Write the explicit \& recursive formula for the sequence
 $$
64,32,16,8,4 \ldots
$$

Click to see answer

Sequences - \$500

explicit: $g_{n}=64 \cdot 1 / 2^{\wedge}(n-1)$
 recursive: $\mathrm{g}_{\mathrm{n}}=\mathrm{g}_{\mathrm{n}-1} \cdot 1 / 2$

